Search results

1 – 4 of 4
Article
Publication date: 11 July 2017

Chrysanthos Maraveas

The DELTA® beam composite floor system is a recently developed shallow floor type that has seen many applications in contemporary construction. It involves partially encasing…

Abstract

Purpose

The DELTA® beam composite floor system is a recently developed shallow floor type that has seen many applications in contemporary construction. It involves partially encasing DELTA® steel beams in concrete, with the lower flange remaining exposed. Besides the satisfactory behavior of the system at ambient conditions, understanding its response under elevated temperatures is critical in evaluating its overall performance. Despite certification from the manufacturing company that the system has adequate fire resistance, its behavior under fire conditions has neither been investigated to depth nor reported in detail. The purpose of this paper is the detailed numerical investigation of their behavior in fire. For this reason, the finite element method was implemented in this paper to simulate the response of such beams subjected to fire. Material properties were modeled according to the Eurocodes. The coupled thermal-structural parametric analyses involved four different variations of the “shortest” and “deepest” cross-section (eight case studies in total) specified by the manufacturing company. Other simulations of these cross-sections, in which either the thermal expansion or the structural load were not taken into account, were carried out for comparison purposes.

Design/methodology/approach

The methodology for simulating such systems, which has been successfully implemented and validated against fire test results elsewhere (Maraveas et al., 2012) was also followed here. To investigate the statement made by Maraveas et al. (2014) and the equations proposed by Zaharia and Franssen (2012) that the insulation is not so effective for “short” cross-sections, two beams, one with a D20-200 (Deltabeam Technical Manual, 2013) cross-section (shallowest section) and one with a D50-600 (Deltabeam Technical Manual, 2013) cross-section (deepest section), were simulated in this paper for comparison purposes. Additionally, reasonable assumptions were made for the cross-sectional dimensions not specified by the manufacturer (Deltabeam Technical Manual, 2013) and parametric analyses were carried out to investigate their effect on the structural response of the system.

Findings

Composite DELTA® beams can achieve fire resistances ranging from 120 to 180 min, depending on the depth and geometry of their cross-section, with deeper sections displaying a better fire response. The intense thermal bowing that occurs when these beams are heated from below has a more pronounced effect, in terms of thermally induced deflections for deeper sections. The satisfactory fire resistance of these beams is achieved due to the action of the concrete encased web and the reinforcement which compensate for the loss of the exposed lower flange. Increasing the thickness of the web in deeper sections improves their fire rating up to 180 min. The thickness of the lower flange affects the fire rating of the beams only in a minor way.

Practical/implications

The paper describes a numerical methodology to estimate the fire resistance of complex flooring systems.

Details

Journal of Structural Fire Engineering, vol. 8 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 26 June 2019

Chrysanthos Maraveas, Thomas Gernay and Jean-Marc Franssen

The purpose of this paper is to present an improved temperature-dependent constitutive model for steel that accounts for local instabilities of slender plates using an effective…

Abstract

Purpose

The purpose of this paper is to present an improved temperature-dependent constitutive model for steel that accounts for local instabilities of slender plates using an effective stress-based method. This model can be easily implemented for use with Bernoulli beam finite elements (FEs) in the fire situation.

Design/methodology/approach

The constitutive model is derived by calibration on parametric numerical analysis on isolated plates subject to buckling at different elevated temperatures. The model is implemented in the FE software SAFIR and validation is performed against experimental and shell element analysis results.

Findings

A constitutive model based on an equivalent stress method is proposed as an efficient way to consider local buckling in steel members exposed to fire. The proposed stress–strain–temperature relationship is asymmetric and is modified in compression only, by reducing the proportional limit, the yield stress and the strain at yield stress. The reduction of these parameters depends on the plate’s boundary conditions, slenderness and temperature. The validation of the proposed model shows good agreement over a range of profile dimensions, temperatures and steel grades.

Research limitations/implications

The model is still giving conservative results for large compressive load eccentricities. An enhanced model is under development to improve the predictive capability under large eccentricities.

Practical implications

The proposed model, easily implemented into any finite element software, allows using fibre type (Bernoulli) beam FEs for modelling structures made of slender sections. This has major practical implications as beam elements are the workhorse used for simulating the behaviour of structures in fire. This model, thus makes it possible to simulate large structures with slender steel sections at a limited computational cost.

Originality/value

The paper presents a novel steel constitutive model based on an innovative approach to capture local buckling at the material level using an equivalent stress approach. The theoretical development, validation and perspectives for future improvements are presented.

Details

Journal of Structural Fire Engineering, vol. 10 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 June 2017

Chrysanthos Maraveas, Zacharias Fasoulakis and Konstantinos Daniel Tsavdaridis

This paper aims to present technical aspects of the assessment method and evaluation of fire damaged steel structures. The current work focuses on the behavior of structural…

Abstract

Purpose

This paper aims to present technical aspects of the assessment method and evaluation of fire damaged steel structures. The current work focuses on the behavior of structural normal steel (hot-rolled and cold-formed) and high-strength bolts after exposure to elevated temperatures. Information on stainless steel, cast iron and wrought iron is also presented.

Design/methodology/approach

Because of the complexity of the issue, an elaborate presentation of the mechanical properties influencing factors is followed. Subsequently, a wide range of experimental studies is extensively reviewed in the literature while simplified equations for determining the post-fire mechanical properties are proposed, following appropriate categorization. Moreover, the reinstatement survey is also comprehensively described.

Findings

Useful conclusions are drawn for the safe reuse of the structural elements and connection components. According to the parametric investigation of the aforementioned data, it can be safely concluded that the most common scenario of buildings after fire events, i.e. apart from excessively distorted structures, implies considerable remaining capacity of the structure, highlighting that subsequent demolition should not be the case, especially regarding critical infrastructure and buildings.

Originality/value

The stability of the structure as a whole is addressed, with aim to establish specific guidelines and code provisions for the correct appraisal and rehabilitation of fire damaged structures.

Details

Journal of Structural Fire Engineering, vol. 8 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 19 October 2018

Naveed Alam, Ali Nadjai, Chrysanthos Maraveas, Konstantinos Tsarvdaridis and Charles Kahanji

The purpose of this study is to investigate the effect of the airgap on thermal behaviour and structural response of fabricated slim floor beams (FSFBs) in fire.

Abstract

Purpose

The purpose of this study is to investigate the effect of the airgap on thermal behaviour and structural response of fabricated slim floor beams (FSFBs) in fire.

Design/methodology/approach

A detailed analytical model is established and validated by replicating the response of FSFBs. The validated finite element modelling method is then used to perform sensitivity analysis. First, the influence of the airgap presence is analysed, and later, the effect of the airgap size on thermal behaviour and structural response of FSFBs at elevated temperatures is investigated.

Findings

Results from the study demonstrate that the presence of the airgap has a considerable influence on their thermal behaviour and structural response of FSFBs. The size of the airgap, however, has no significant influence on their thermal and structural response in fire.

Originality/value

No investigations, experimental or analytical, are available in literature addressing the effect of airgap on the structural response of FSFBs in fire. The presence of airgap is helpful and beneficial; hence, the findings of this research can be used to develop designs for structural members with airgap as an efficient and inexpensive way to improve their response in fire.

Details

Journal of Structural Fire Engineering, vol. 10 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 4 of 4